Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Redox State Controls Phase Separation of the Yeast Ataxin-2 Protein via Reversible Oxidation of Its Methionine-Rich Low-Complexity Domain.

Identifieur interne : 000250 ( Main/Exploration ); précédent : 000249; suivant : 000251

Redox State Controls Phase Separation of the Yeast Ataxin-2 Protein via Reversible Oxidation of Its Methionine-Rich Low-Complexity Domain.

Auteurs : Masato Kato [États-Unis] ; Yu-San Yang [États-Unis] ; Benjamin M. Sutter [États-Unis] ; Yun Wang [États-Unis] ; Steven L. Mcknight [États-Unis] ; Benjamin P. Tu [États-Unis]

Source :

RBID : pubmed:30982603

Descripteurs français

English descriptors

Abstract

Yeast ataxin-2, also known as Pbp1, senses the activity state of mitochondria in order to regulate TORC1. A domain of Pbp1 required to adapt cells to mitochondrial activity is of low sequence complexity. The low-complexity (LC) domain of Pbp1 forms labile, cross-β polymers that facilitate phase transition of the protein into liquid-like or gel-like states. Phase transition for other LC domains is reliant upon widely distributed aromatic amino acids. In place of tyrosine or phenylalanine residues prototypically used for phase separation, Pbp1 contains 24 similarly disposed methionine residues. Here, we show that the Pbp1 methionine residues are sensitive to hydrogen peroxide (H2O2)-mediated oxidation in vitro and in living cells. Methionine oxidation melts Pbp1 liquid-like droplets in a manner reversed by methionine sulfoxide reductase enzymes. These observations explain how reversible formation of labile polymers by the Pbp1 LC domain enables the protein to function as a sensor of cellular redox state.

DOI: 10.1016/j.cell.2019.02.044
PubMed: 30982603
PubMed Central: PMC6752730


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Redox State Controls Phase Separation of the Yeast Ataxin-2 Protein via Reversible Oxidation of Its Methionine-Rich Low-Complexity Domain.</title>
<author>
<name sortKey="Kato, Masato" sort="Kato, Masato" uniqKey="Kato M" first="Masato" last="Kato">Masato Kato</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yu San" sort="Yang, Yu San" uniqKey="Yang Y" first="Yu-San" last="Yang">Yu-San Yang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sutter, Benjamin M" sort="Sutter, Benjamin M" uniqKey="Sutter B" first="Benjamin M" last="Sutter">Benjamin M. Sutter</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yun" sort="Wang, Yun" uniqKey="Wang Y" first="Yun" last="Wang">Yun Wang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mcknight, Steven L" sort="Mcknight, Steven L" uniqKey="Mcknight S" first="Steven L" last="Mcknight">Steven L. Mcknight</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA. Electronic address: steven.mcknight@utsouthwestern.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tu, Benjamin P" sort="Tu, Benjamin P" uniqKey="Tu B" first="Benjamin P" last="Tu">Benjamin P. Tu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA. Electronic address: benjamin.tu@utsouthwestern.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30982603</idno>
<idno type="pmid">30982603</idno>
<idno type="doi">10.1016/j.cell.2019.02.044</idno>
<idno type="pmc">PMC6752730</idno>
<idno type="wicri:Area/Main/Corpus">000294</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000294</idno>
<idno type="wicri:Area/Main/Curation">000294</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000294</idno>
<idno type="wicri:Area/Main/Exploration">000294</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Redox State Controls Phase Separation of the Yeast Ataxin-2 Protein via Reversible Oxidation of Its Methionine-Rich Low-Complexity Domain.</title>
<author>
<name sortKey="Kato, Masato" sort="Kato, Masato" uniqKey="Kato M" first="Masato" last="Kato">Masato Kato</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yu San" sort="Yang, Yu San" uniqKey="Yang Y" first="Yu-San" last="Yang">Yu-San Yang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sutter, Benjamin M" sort="Sutter, Benjamin M" uniqKey="Sutter B" first="Benjamin M" last="Sutter">Benjamin M. Sutter</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yun" sort="Wang, Yun" uniqKey="Wang Y" first="Yun" last="Wang">Yun Wang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mcknight, Steven L" sort="Mcknight, Steven L" uniqKey="Mcknight S" first="Steven L" last="Mcknight">Steven L. Mcknight</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA. Electronic address: steven.mcknight@utsouthwestern.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tu, Benjamin P" sort="Tu, Benjamin P" uniqKey="Tu B" first="Benjamin P" last="Tu">Benjamin P. Tu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA. Electronic address: benjamin.tu@utsouthwestern.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell</title>
<idno type="eISSN">1097-4172</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Carrier Proteins (chemistry)</term>
<term>Carrier Proteins (genetics)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Hydrogen Peroxide (pharmacology)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (metabolism)</term>
<term>Methionine (chemistry)</term>
<term>Methionine (metabolism)</term>
<term>Methionine Sulfoxide Reductases (metabolism)</term>
<term>Mitochondria (drug effects)</term>
<term>Mitochondria (metabolism)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (drug effects)</term>
<term>Phase Transition (MeSH)</term>
<term>Protein Domains (MeSH)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Domaines protéiques (MeSH)</term>
<term>Methionine Sulfoxide Reductases (métabolisme)</term>
<term>Mitochondries (effets des médicaments et des substances chimiques)</term>
<term>Mitochondries (métabolisme)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Méthionine (composition chimique)</term>
<term>Méthionine (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxyde d'hydrogène (pharmacologie)</term>
<term>Protéines de Saccharomyces cerevisiae (composition chimique)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de transport (composition chimique)</term>
<term>Protéines de transport (génétique)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Stress oxydatif (effets des médicaments et des substances chimiques)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Transition de phase (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carrier Proteins</term>
<term>Methionine</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Carrier Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carrier Proteins</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Methionine</term>
<term>Methionine Sulfoxide Reductases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Hydrogen Peroxide</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Méthionine</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de transport</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Mitochondria</term>
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Mitochondries</term>
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de transport</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Methionine Sulfoxide Reductases</term>
<term>Mitochondries</term>
<term>Méthionine</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de transport</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Mutagenesis, Site-Directed</term>
<term>Oxidation-Reduction</term>
<term>Phase Transition</term>
<term>Protein Domains</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Domaines protéiques</term>
<term>Mutagenèse dirigée</term>
<term>Oxydoréduction</term>
<term>Séquence d'acides aminés</term>
<term>Transition de phase</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Yeast ataxin-2, also known as Pbp1, senses the activity state of mitochondria in order to regulate TORC1. A domain of Pbp1 required to adapt cells to mitochondrial activity is of low sequence complexity. The low-complexity (LC) domain of Pbp1 forms labile, cross-β polymers that facilitate phase transition of the protein into liquid-like or gel-like states. Phase transition for other LC domains is reliant upon widely distributed aromatic amino acids. In place of tyrosine or phenylalanine residues prototypically used for phase separation, Pbp1 contains 24 similarly disposed methionine residues. Here, we show that the Pbp1 methionine residues are sensitive to hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
)-mediated oxidation in vitro and in living cells. Methionine oxidation melts Pbp1 liquid-like droplets in a manner reversed by methionine sulfoxide reductase enzymes. These observations explain how reversible formation of labile polymers by the Pbp1 LC domain enables the protein to function as a sensor of cellular redox state.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30982603</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>01</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1097-4172</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>177</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2019</Year>
<Month>04</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>Cell</Title>
<ISOAbbreviation>Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Redox State Controls Phase Separation of the Yeast Ataxin-2 Protein via Reversible Oxidation of Its Methionine-Rich Low-Complexity Domain.</ArticleTitle>
<Pagination>
<MedlinePgn>711-721.e8</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0092-8674(19)30227-2</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.cell.2019.02.044</ELocationID>
<Abstract>
<AbstractText>Yeast ataxin-2, also known as Pbp1, senses the activity state of mitochondria in order to regulate TORC1. A domain of Pbp1 required to adapt cells to mitochondrial activity is of low sequence complexity. The low-complexity (LC) domain of Pbp1 forms labile, cross-β polymers that facilitate phase transition of the protein into liquid-like or gel-like states. Phase transition for other LC domains is reliant upon widely distributed aromatic amino acids. In place of tyrosine or phenylalanine residues prototypically used for phase separation, Pbp1 contains 24 similarly disposed methionine residues. Here, we show that the Pbp1 methionine residues are sensitive to hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
)-mediated oxidation in vitro and in living cells. Methionine oxidation melts Pbp1 liquid-like droplets in a manner reversed by methionine sulfoxide reductase enzymes. These observations explain how reversible formation of labile polymers by the Pbp1 LC domain enables the protein to function as a sensor of cellular redox state.</AbstractText>
<CopyrightInformation>Copyright © 2019 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kato</LastName>
<ForeName>Masato</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Yu-San</ForeName>
<Initials>YS</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sutter</LastName>
<ForeName>Benjamin M</ForeName>
<Initials>BM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yun</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McKnight</LastName>
<ForeName>Steven L</ForeName>
<Initials>SL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA. Electronic address: steven.mcknight@utsouthwestern.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tu</LastName>
<ForeName>Benjamin P</ForeName>
<Initials>BP</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA. Electronic address: benjamin.tu@utsouthwestern.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM094314</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R35 GM130358</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>S10 OD021684</GrantID>
<Acronym>OD</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U01 GM107623</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<Acronym>HHMI</Acronym>
<Agency>Howard Hughes Medical Institute</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>04</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Cell</MedlineTA>
<NlmUniqueID>0413066</NlmUniqueID>
<ISSNLinking>0092-8674</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C116076">PBP1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>AE28F7PNPL</RegistryNumber>
<NameOfSubstance UI="D008715">Methionine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.4.-</RegistryNumber>
<NameOfSubstance UI="D051150">Methionine Sulfoxide Reductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.4.11</RegistryNumber>
<NameOfSubstance UI="C027219">methionine sulfoxide reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Cell Metab. 2019 May 7;29(5):1019-1021</RefSource>
<PMID Version="1">31067446</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008715" MajorTopicYN="N">Methionine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051150" MajorTopicYN="N">Methionine Sulfoxide Reductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044367" MajorTopicYN="N">Phase Transition</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Ataxin-2</Keyword>
<Keyword MajorTopicYN="Y">ROS</Keyword>
<Keyword MajorTopicYN="Y">TORC1</Keyword>
<Keyword MajorTopicYN="Y">aging</Keyword>
<Keyword MajorTopicYN="Y">cross-β polymer</Keyword>
<Keyword MajorTopicYN="Y">low-complexity sequence</Keyword>
<Keyword MajorTopicYN="Y">methionine</Keyword>
<Keyword MajorTopicYN="Y">neurodegeneration</Keyword>
<Keyword MajorTopicYN="Y">oxidative stress</Keyword>
<Keyword MajorTopicYN="Y">phase separation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>11</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>02</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30982603</ArticleId>
<ArticleId IdType="pii">S0092-8674(19)30227-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.cell.2019.02.044</ArticleId>
<ArticleId IdType="pmc">PMC6752730</ArticleId>
<ArticleId IdType="mid">NIHMS1522968</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Genet. 2006;40:159-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Feb;177(3):502-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7836279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Nov 5;163(4):829-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26544936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Dec;18(12):7383-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9819425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 May 11;149(4):768-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22579282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Oct 19;171(3):615-627.e16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28942918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Aug 26;466(7310):1069-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20740007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1988;5(5-6):363-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2855736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jul 02;8(7):e67902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23844123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2009 Nov;5(8):1186-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19806021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Nov 17;292(46):19110-19120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28924037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9585-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9275166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Nov;22(21):4124-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21900499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2016 Dec;41:180-186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27552079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2017 Nov;13(11):1179-1186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28920930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2018 May 16;98(4):754-766.e4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29772202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Jun 17;264(5166):1772-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8209258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Mar 4;362(6415):59-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8446170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biofactors. 2015 May 6;41(3):135-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25963551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Apr;18(4):1385-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2019 Apr 18;177(3):697-710.e17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30982600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2008 Nov 3;183(3):441-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18981231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2014 Dec 16;7(356):ra120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25515537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Feb 11;346(1):203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15663938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Oct 15;60(2):208-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26412307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 18;310(5751):1152-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16254148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 2000 Jun 1;26(9-10):706-714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10862876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Sep 24;163(1):123-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26406374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroreport. 2007 Apr 16;18(6):559-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17413657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2011 Aug 15;20(16):3207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21610160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2017 Aug 1;26(2):419-428.e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28768179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Apr 24;517(1-3):239-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12062445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 May 11;149(4):753-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22579281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2018 Jul 26;174(3):688-699.e16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29961577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 1999 Feb;15(1):34-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10024467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Apr 15;286(15):13430-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21345799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):16886-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17940006</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Kato, Masato" sort="Kato, Masato" uniqKey="Kato M" first="Masato" last="Kato">Masato Kato</name>
</region>
<name sortKey="Mcknight, Steven L" sort="Mcknight, Steven L" uniqKey="Mcknight S" first="Steven L" last="Mcknight">Steven L. Mcknight</name>
<name sortKey="Sutter, Benjamin M" sort="Sutter, Benjamin M" uniqKey="Sutter B" first="Benjamin M" last="Sutter">Benjamin M. Sutter</name>
<name sortKey="Tu, Benjamin P" sort="Tu, Benjamin P" uniqKey="Tu B" first="Benjamin P" last="Tu">Benjamin P. Tu</name>
<name sortKey="Wang, Yun" sort="Wang, Yun" uniqKey="Wang Y" first="Yun" last="Wang">Yun Wang</name>
<name sortKey="Yang, Yu San" sort="Yang, Yu San" uniqKey="Yang Y" first="Yu-San" last="Yang">Yu-San Yang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000250 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000250 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30982603
   |texte=   Redox State Controls Phase Separation of the Yeast Ataxin-2 Protein via Reversible Oxidation of Its Methionine-Rich Low-Complexity Domain.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30982603" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020